The Effect of Duvelisib, a Dual Inhibitor of PI3K-δ,γ on the Components of the Tumor Microenvironment in Previously Untreated Follicular Lymphoma Patients

Carla Casulo, Andrea Goy, Koen Van Eygken, Juan M. Sanchez, Santiago Mercadal, Rod Johnson, Sven DeVos, Kamal-Krimo Bouddahallah, Kam Sprott, NgocDipe Le, Jonathan A. Pachter, David T. Weaver

Winston Cancer Institute University of Rochester Medical School, Rochester, New York, USA; Vniversidad Hospital Center, Haarlem, New York, USA; "J" GROENEVE, Kortrijk, Belgium; Hospital Universitario Gareme San Pablo, Badalona, Spain; Department of Hematology, CCHospital-Dracuignes; Raymond Hospital, Los Angeles, California, USA; University College Hospital, UCH, Hounslow, Hounslow, Middlesex, UK; Verastem Inc.

Poster 216
Abstract 7579

Background

PI3K-δ inhibition directly targets malignant cells, while PI3K-γ inhibition dampens the supportive tumor microenvironment.

Duvelisib, an oral inhibitor of PI3K-δ and PI3K-γ, has shown clinical activity in RR, including DLBCL, FL, and MCL.

Duvelisib has shown an acceptable safety profile in studies in patients with advanced hematologic malignancies. The CONTEMPO study is a 2-arm, open-label, Phase 1/2 study that examined the safety and efficacy of duvelisib in combination with either rituximab or bendamustine in previously untreated DLBCL. (see items marked with § at left)

PI3K-δ and PI3K-γ Inhibitors

Phase 2 Study

PI3K-δ and PI3K-γ Inhibitors

Phase 3 Study

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Results

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Conclusion

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Acknowledgements:

Equal contribution – analysis of variance, RMO, WLDJ, SG, GB; 2 H: data analysis, RMO, SG, GB; 2 A: data analysis, RMO, SG. All authors have participated in the study design, data analysis, and manuscript writing. All authors have read and approved the final manuscript.

Figure 6: Effect of Duvelisib, a Dual Inhibitor of PI3K-δ,γ on the Components of the Tumor Microenvironment in Previously Untreated Follicular Lymphoma Patients

PI3K-δ and PI3K-γ Inhibitors

Phase 2 Study

PI3K-δ and PI3K-γ Inhibitors

Phase 3 Study

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Results

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Conclusion

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Acknowledgements:

Equal contribution – analysis of variance, RMO, WLDJ, SG, GB; 2 H: data analysis, RMO, SG, GB; 2 A: data analysis, RMO, SG. All authors have participated in the study design, data analysis, and manuscript writing. All authors have read and approved the final manuscript.

Figure 6: Effect of Duvelisib, a Dual Inhibitor of PI3K-δ,γ on the Components of the Tumor Microenvironment in Previously Untreated Follicular Lymphoma Patients

PI3K-δ and PI3K-γ Inhibitors

Phase 2 Study

PI3K-δ and PI3K-γ Inhibitors

Phase 3 Study

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Results

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Conclusion

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Acknowledgements:

Equal contribution – analysis of variance, RMO, WLDJ, SG, GB; 2 H: data analysis, RMO, SG, GB; 2 A: data analysis, RMO, SG. All authors have participated in the study design, data analysis, and manuscript writing. All authors have read and approved the final manuscript.

Figure 6: Effect of Duvelisib, a Dual Inhibitor of PI3K-δ,γ on the Components of the Tumor Microenvironment in Previously Untreated Follicular Lymphoma Patients

PI3K-δ and PI3K-γ Inhibitors

Phase 2 Study

PI3K-δ and PI3K-γ Inhibitors

Phase 3 Study

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Results

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Conclusion

Whole blood activity was assayed using fMLP-stimulated monocytes and LPS-stimulated monocytes.

Acknowledgements:

Equal contribution – analysis of variance, RMO, WLDJ, SG, GB; 2 H: data analysis, RMO, SG, GB; 2 A: data analysis, RMO, SG. All authors have participated in the study design, data analysis, and manuscript writing. All authors have read and approved the final manuscript.