Dual RAF/MEK inhibitor VS-6766 for treatment of KRAS mutant NSCLC: Novel combinations targeting G12V or G12C variants

Jonathan Pachter, PhD, Chief Scientific Officer
July 14, 2021
Disclosures

- I am an employee of Verastem Oncology
- I will be discussing investigational/off-label uses of VS-6766 (RAF/MEK inhibitor) and defactinib (focal adhesion kinase inhibitor)
VS-6766 is a Unique Small Molecule RAF/MEK Inhibitor

- VS-6766 inhibits both MEK & RAF kinase activities
- MEK inhibitors paradoxically induce MEK phosphorylation (pMEK) by relieving ERK-dependent feedback inhibition of RAF
- By inhibiting RAF phosphorylation of MEK, VS-6766 has advantage of not inducing pMEK
- VS-6766 inhibits ERK signaling more completely; may confer enhanced therapeutic activity

Anti-tumor effects of VS-6766 across multiple indications and multiple MAPK pathway alterations

VS-6766 IC50
KRAS/BRAF/NRAS/NF1 mt cell lines

Krás/Braf/Nrás/Nf1 mt status:
- KRAS/Braf wt
- BRAF V600E
- KRAS G12C
- KRAS G12D
- KRAS G12V
- NRAS mt
- NF1 mt

Indication:
- NSCLC
- Panc
- CRC
- Other

- KRAS mt
- Braf V600E

Cell lines:
- CHL-1
- SNU-C1
- SW48
- Hs 895.T
- SW1573
- H2030
- H2122
- SW837
- H1373
- H358
- MIAPACA2
- SW1463
- SNU-C2A
- A427
- SKLU1
- LS 180
- LS513
- SNU-C2B
- HPAFII
- ASPC1
- CAPAN-1
- H2444
- H441
- LS174 T
- LS174
- H2291
- PANC0327
- SW620
- SK-CO-1
- SW403
- H441
- HCT-116
- HCT 116
- NCI-H747
- Calu-6
- RKO
- A2058
- Colo-205
- IGR-1
- A375
- SW1417
- WM-266-4
- HT-29
- NCI-H2087
- SK-MEL-2
- GAK
- HMCB

Verastem Oncology
VS-6766 monotherapy has shown clinical activity in several cancer indications, including NSCLC

Best Response

Guo et al., Lancet Oncology 2020
More Complete Shutdown of Tumor Growth Requires Addressing Multiple Resistance Mechanisms

- BRAF inhibition induces compensatory activation of pFAK\(^1\)
- MEK inhibition induces compensatory activation of pFAK preclinically and clinically\(^2\)
 - Trametinib induced ↑ pFAK (Y397) preclinically in KRAS mt NSCLC cell lines
 - Also observed in patients
 - VS-6766 induced ↑ pFAK (Y397) as a potential resistance mechanism in the majority of patients
 - Combination with defactinib reduced this compensatory pFAK signal
- Upon MEK blockade, pERK inhibition feeds back to activate RAF kinase

References: \(^1\) Chen, *Mol Cancer Res* 2018; \(^2\) Banerji, BTOG Dublin, Jan 23, 2019
BRAF inhibition induces compensatory activation of pFAK\(^1\)

MEK inhibition induces compensatory activation of pFAK preclinically and clinically\(^2\)
- Trametinib induced ↑ pFAK (Y397) preclinically in KRAS mt NSCLC cell lines
- Also observed in patients
 - VS-6766 induced ↑ pFAK (Y397) as a potential resistance mechanism in the majority of patients
 - Combination with defactinib reduced this compensatory pFAK signal

Upon MEK blockade, pERK inhibition feeds back to activate RAF kinase

= Feedback Reactivation

References: \(^1\) Chen, *Mol Cancer Res* 2018; \(^2\) Banerji, BTOG Dublin, Jan 23, 2019
Combination of VS-6766 with FAK Inhibitor Leads to More Robust Anti-Tumor Efficacy \textit{In vivo} & Suppresses pFAK in Patient’s Tumors

NSCLC cancer model H358 KRAS G12C mt

NSCLC cancer model H2122 KRAS G12C mt

VS-6766 induces pFAK in patient’s tumors

U. Banerji, AACR 2020
Favorable Tolerability Profile with Novel Intermittent Dosing Regimen

Summary of Adverse Events Grade \(\geq 3 \) Occurring in \(\geq 5\% \) of patients

<table>
<thead>
<tr>
<th>Treatment Related Adverse Event</th>
<th>VS-6766 monotherapy Daily at MTD N=6 28-day cycle</th>
<th>RP2D VS-6766 monotherapy 4mg twice weekly N=26 28-day cycle</th>
<th>RP2D (VS-6766 3.2mg twice weekly + defactinib 200mg twice daily) N=38 21 days of 28-day cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>Grade (\geq 3): 3 (50%)</td>
<td>Grade (\geq 3): 5 (19%)</td>
<td>Grade (\geq 3): 2 (5%)</td>
</tr>
<tr>
<td>CK elevation (Creatine phosphokinase)</td>
<td>Grade (\geq 3): 1 (17%)</td>
<td>Grade (\geq 3): 2 (8%)</td>
<td>Grade (\geq 3): 2 (5%)</td>
</tr>
</tbody>
</table>

Summary of FRAME Safety Profile

Most Adverse Events (AE) were Grade 1/2

Few patients have discontinued due to AEs in the study

References:
1 Chenard-Poirier, et al. ASCO 2017
References: Banerji, Q4 2020 report; Data on file
RP2D: recommended phase 2 dosing
Target exposure for preclinical tumor regression is covered by twice weekly dosing of 4 mg VS-6766 3 wks on/1 wk off

- Modeling of PK for 4 mg VS-6766 2/wk, 3 wks on/1 wk off, based on 4 mg single dose PK data (study NO21895)
- Relationship to average exposure for tumor regression in KRAS G12V mt NSCLC mouse model

C_{av} for tumor regression from KRAS G12V mt NSCLC GEMM model
Clinical Activity of VS-6766 + Defactinib in Low-Grade Serous Ovarian Cancer (LGSOC)

- Overall response rate (ORR) is 52% (11 of 21 response evaluable patients)
 - KRAS mutant ORR at 70% (7 of 10 response evaluable patients)
 - KRAS wild-type ORR at 44% (4 of 9 response evaluable patients)
 - KRAS status undetermined ORR at 0% (0 of 2 response evaluable patients)

- As reported previously, the most common side effects seen in the study were rash, creatine kinase elevation, nausea, hyperbilirubinemia and diarrhea, most being NCI CTC Grade 1/2 and all were reversible

May 2021: FDA granted Breakthrough Therapy designation for VS-6766 + defactinib for treatment of patients with recurrent low-grade serous ovarian cancer (LGSOC) after one or more prior lines of therapy, including platinum-based chemotherapy
VS-6766 Inhibits CRAF - Key driver of KRAS-G12V mutant NSCLC

A Precision Approach to KRAS-G12V Driven NSCLC

- KRAS\(^{G12V}\) signals mainly through RAF/MEK in contrast to other variants, such as KRAS-G12D, which signal more through PI3K/AKT
- KRAS\(^{G12V}\) models are especially dependent on CRAF

CRAF, but not BRAF, ablation improves survival of mice with KRAS\(^{G12V}\) induced lung cancer in vivo

VS-6766 +/- FAKi confers strong tumor regression in CRAF-dependent KRAS G12V mutant NSCLC in vivo

- VS-6766 monotherapy caused tumor regression
- VS-6766 + FAKi showed stronger regression
- Anti-tumor effect of trametinib not significant at same dose level

Doses Tested
- Trametinib: 0.1 mg/kg QD (5 days/week)
- VS-6766: 0.1 mg/kg QD (5 days/week)
- FAKi: 50 mg/kg BID (5 days/week)

Statistics: Mann-Whitney test

Collaboration with Mariano Barbacid
Response to VS-6766 + Defactinib in a Patient with KRAS G12V mt NSCLC

May 2019- Diagnosed with NSCLC

June 2019- Sept 2019 treated with first line Carboplatin + Pemetrexed + Pembrolizumab

Oct 2019- Progression, palliative RT to right hip

Nov 2019- To present on treatment on FRAME study VS-6766 + Defactinib

Presented by Matt Krebs in oral AACR 2021 presentation
NSCLC Responses with VS-6766 + Defactinib Combination (n=20)

Confirmed responses in 2/2 patients with KRAS-G12V NSCLC

Tumor reduction in 4/6 patients with KRAS-G12C NSCLC

- ORR = 15% (3/20)
- ORR in G12V mt = 100% (2/2)
- DCR = 65% (13/20)
- 3/20 (15%) still on study
- 7 pts on treatment ≥ ~24 weeks

Data cut off March 5, 2021

Matt Krebs, AACR 2021
Strong Signal in KRAS G12V NSCLC to be Further Validated

VS-6766 ± Defactinib Has a Confirmed 57% ORR in KRAS\(^{G12V}\) NSCLC in Integrated Analysis

- Activity of VS-6766 as a single agent and in combo with defactinib in KRAS G12V mt NSCLC

NSCLC Clinical Strategy: KRAS Mutant (mt), Enriched G12V, Phase 2, Recurrent NSCLC for Potential Accelerated Approval

- Recurrent NSCLC
- 1-2 prior regimens
- 1 prior platinum-containing chemo;
- Prior CPI unless contraindicated
- Measurable disease (RECIST 1.1)
- Appropriate approved therapy for other relevant mutations
- No prior MEKi, no prior KRAS-specific targeted therapy
- No untreated CNS metastases
- ECOG OS 0-1

Selection Phase

- Defactinib + VS-6766¹
 - KRAS mt G12V
 - N=16

- VS-6766²
 - KRAS mt G12V
 - N=16

Expansion Phase

- KRAS Mutant – G12V
 - Selected Regimen based on ORR

- Defactinib + VS-6766¹
 - KRAS mt non-G12V
 - N=25, maximum

- KRAS Mutant – non-G12V
 - Exploratory mutation-specific cohort analyses for ORR

This Registration-directed Phase 2 Study commenced December 2020 with an estimated Primary Completion Date for the Expansion Phase of March 2023 (clinicaltrials.gov)

¹ Defactinib 200 mg PO BID (21/28 days) + VS-6766 3.2 mg PO 2x/wk (21/28 days)
² VS-6766 4.0 mg PO 2x/wk (21/28 days)
Mechanisms of acquired resistance to KRAS G12Ci treatment in patients recently reported1,2

The main resistance alterations occurred in:

- RTK mts or amplifications
- KRAS mts or amplification
- NRAS mt
- BRAF V600E mt, BRAF or CRAF fusions
- MAP2K1 (MEK1) mt/deletion

VS-6766 is expected to be effective against these KRAS, NRAS, BRAF and CRAF modifications

1Awad MM et al., N Engl J Med 2021; 384: 2382-93; 2Tanaka et al., Cancer Discov 2021;11:1–10
Preclinical synergy of VS-6766 + G12C inhibitors observed in KRAS G12C mutant NSCLC, CRC and pancreatic cancer cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Indication</th>
<th>Sensitivity to G12C inhibitors</th>
<th>VS-6766 + AMG 510 IC50 (nM)</th>
<th>VS-6766 + MRTX849 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2122</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>44.7</td>
<td>44.6</td>
</tr>
<tr>
<td>H1373</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>10.0</td>
<td>3.4</td>
</tr>
<tr>
<td>SW1573</td>
<td>NSCLC</td>
<td>Insensitive</td>
<td>8.6</td>
<td>12.0</td>
</tr>
<tr>
<td>H358</td>
<td>NSCLC</td>
<td>Sensitive</td>
<td>6.9</td>
<td>5.4</td>
</tr>
<tr>
<td>H2030</td>
<td>NSCLC</td>
<td>Moderately sensitive</td>
<td>5.1</td>
<td>ND</td>
</tr>
<tr>
<td>SW837</td>
<td>CRC</td>
<td>Sensitive</td>
<td>16.1</td>
<td>18.5</td>
</tr>
<tr>
<td>MIAPACA2</td>
<td>Panc</td>
<td>Sensitive</td>
<td>2.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>

H2122 KRAS G12C mt NSCLC

<table>
<thead>
<tr>
<th>AMG 510 Single Agent (SA)</th>
<th>AMG 510 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ VS-6766 0.008 µM</td>
<td>631</td>
</tr>
<tr>
<td>+ VS-6766 0.04 µM</td>
<td>439</td>
</tr>
<tr>
<td>+ VS-6766 0.2 µM</td>
<td>134</td>
</tr>
<tr>
<td>+ VS-6766 1 µM</td>
<td>28</td>
</tr>
<tr>
<td>+ VS-6766 5 µM</td>
<td>0.4</td>
</tr>
</tbody>
</table>

VS-6766 + MRTX849 H2122 KRAS G12C mt NSCLC

<table>
<thead>
<tr>
<th>MRTX849 Single Agent (SA)</th>
<th>MRTX849 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ VS-6766 0.008 µM</td>
<td>937</td>
</tr>
<tr>
<td>+ VS-6766 0.04 µM</td>
<td>290</td>
</tr>
<tr>
<td>+ VS-6766 0.2 µM</td>
<td>83</td>
</tr>
<tr>
<td>+ VS-6766 1 µM</td>
<td>23</td>
</tr>
<tr>
<td>+ VS-6766 5 µM</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td><0.1</td>
</tr>
</tbody>
</table>
Addition of VS-6766 to AMG 510 increases depth & duration of pERK inhibition relative to AMG 510 alone across a panel of KRAS G12C mutant NSCLC cell lines.

- **H358** (Sensitive to G12C)
- **H1373** (Sensitive to G12C)
- **H2122** (Moderately sensitive to G12C)
- **SW1573** (Insensitive to G12C)

H358 pERK
- **4h**: AMG 510 - + + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +
- **48h**: AMG 510 - + + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +

H1373 pERK
- **4h**: AMG 510 - - + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +
- **48h**: AMG 510 - - + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +

H2122 pERK
- **4h**: AMG 510 - + + + + AMG 510 + VS-6766 + + + + + Vehicle - + + + +
- **48h**: AMG 510 - + + + + AMG 510 + VS-6766 + + + + + Vehicle - + + + +

SW1573 pERK
- **4h**: AMG 510 - - + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +
- **48h**: AMG 510 - - + + + AMG 510 + VS-6766 - + + + + Vehicle - + + + +

H2122 is moderately sensitive to G12C.

SW1573 is insensitive to G12C.

H358 and **H1373** are sensitive to G12C.
VS-6766 & FAKi potentiate AMG 510 efficacy in KRAS G12C mutant NSCLC in vivo

Tumor regression in all mice with triple combination
High Unmet Need in Refractory KRAS mut NSCLC Adenocarcinoma

KRAS Mutations Represent 25% of Lung Cancer Adenocarcinoma (EGFR 17%, ALK 7%)4

1 GloboCan, 2018
2 https://www.ncbi.nlm.nih.gov/books/NBK519578/
3 TCGA PanCancer Atlas (cBioPortal analysis)
4 www.thelancet.com Vol 389 January 21, 2017
5 Adapted from NCCN Non-small cell lung cancer guidelines Version 3.2020

NSCLC Adenocarcinoma3

US Annual Incidence1,2: 92K
WW Annual Incidence1,2: 836K

% of Patients

0 5 10 15

G12C G12V G12D G12A G13C G12S G13D

KRAS Mutation

Advanced or Metastatic NSCLC Recommend Histologic and Molecular Subtyping5

EGFR/ALK/ROS1/BRAF (targeted)
Non-targeted PD-(L)1 ≥ 1%
Non-Targeted PD-(L)1 < 1%

Appropriate targeted agent
PD-(L)1 single agent or PD-(L)1 + chemo
Chemo ± PD-(L)1

Recurrence

Prior PD-(L)1
Chemotherapy
- Docetaxel
- Gemcitabine
- Pemetrexed

No Prior PD-(L)1
PD-(L)1

Chemotherapy or clinical trials

• SOC in recurrent disease is chemotherapy
• Pre-PD-(L)1 era, chemotherapy response rate ~10% in recurrent disease; 12w PFS of 30–45%
Vertical Blockade: Preclinical synergy of VS-6766 with inhibitors of several promising targets

- **Growth factors**: EGFR, FGFR, SHP2, SOS1, G12C, RAF, MEK, ERK
- **RTK**: EGFR, FGFR
- **RAS**: SHP2, SOS1
- **RAF**: G12C
- **MEK**: MEK
- **ERK**: ERK

Indication
- KRAS G12C
- KRAS G12D
- KRAS G12V

Combinable Synergy Score
- **VS-6766 + pan-HERi (Afatinib)**
- **VS-6766 + SHP2i (RMC-4550)**
- **VS-6766 + SOS1i (BI-3406)**

Combination Treatments
- VS-6766 + G12Ci (AMG 510)
- VS-6766 + G12Ci (MRTX849)
- VS-6766 + ERK1/2i (LY3214996)

Cell Lines
- CRC
- NSCLC
- PDAC
- Synergy
- Antagonism

Significance
- 80% (4/5)
- 100% (5/5)
- 100% (6/6)
- 100% (5/5)
- 100% (6/6)
- 66% (4/6)
- 60% (3/5)
- 83% (5/6)
- 100% (5/5)
- 83% (5/6)
- 60% (3/5)
- 100% (5/5)
- 66% (4/6)
Parallel Pathway Blockade: Preclinical synergy of VS-6766 with inhibitors of several promising targets

VS-6766 + p70S6K/AKTi (M2698)

VS-6766 + mTORi (Everolimus)

VS-6766 + FAKi (Defactinib)

VS-6766 + CDK4/6i (Palbociclib)
Combination of VS-6766 with Everolimus (mTOR inhibitor) now being evaluated in patients with KRAS mt NSCLC

- Synergy of VS-6766 + everolimus observed broadly across cancer cell lines with various KRAS mutation variants

- A well-tolerated RP2D for VS-6766 + everolimus has been established with intermittent dosing of both agents (twice weekly; 3 wks on/1 wk off)

- KRAS mutant NSCLC expansion cohort is currently ongoing with VS-6766 + everolimus
Conclusions: VS-6766 as potential backbone of therapy for KRAS mutant NSCLC

▪ For KRAS G12V mt NSCLC
 o VS-6766 ± FAKi induces tumor regression in KRAS G12V mt NSCLC genetically engineered mouse model: Consistent with the strong dependence of KRAS G12V mt NSCLC on CRAF
 o VS-6766 ± defactinib has elicited confirmed responses in patients with KRAS G12V mt NSCLC (4/7 pts; 57% ORR)
 o A registration-directed trial of VS-6766 ± defactinib is ongoing with main focus on recurrent KRAS G12V mt NSCLC (NCT04620330)

▪ For KRAS G12C mt NSCLC
 o Preclinical synergy of VS-6766 with G12C inhibitors across KRAS G12C mt cell lines correlates with deeper/sustained pERK inhibition and tumor regressions in KRAS G12C mt NSCLC xenograft models
 o Clinical data (Awad, NEJM, 2021) show that acquired resistance to adagrasib in patients with KRAS G12C mt NSCLC is largely mediated by additional RAS and/or RAF mutations – predicted to be sensitive to VS-6766
 o With the recent approval of sotorasib, VS-6766 + sotorasib would no longer be a novel:novel combination

▪ For other KRAS mutations
 o A cohort is currently ongoing in the UK testing a RP2D of VS-6766 + everolimus (mTOR inhibitor) in patients with KRAS mutant NSCLC
 o Other combinations with VS-6766 (e.g. with SOS1i; SHP2i) also supported by preclinical data
Acknowledgments

Verastem Oncology
- Silvia Coma
- Sanjib Chowdhury
- Narayana Narasimhan
- Andrew Koustenis

Royal Marsden Hospital, UK
- Udai Banerji

CNIO, Spain
- Monica Musteanu
- Mariano Barbacid

Thanks for your attention!