

Corporate Presentation

August 2021

Safe Harbor Statement

This presentation includes forward-looking statements about, among other things, Verastem Oncology's programs and product candidates, including anticipated regulatory submissions, approvals, performance and potential benefits of Verastem Oncology's product candidates, that are subject to substantial risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements. Applicable risks and uncertainties include the risks and uncertainties, among other things, regarding: the success in the development and potential commercialization of our product candidates, including defactinib in combination with VS-6766; the occurrence of adverse safety events and/or unexpected concerns that may arise from additional data or analysis or result in unmanageable safety profiles as compared to their levels of efficacy; or our ability to obtain, maintain and enforce patent and other intellectual property protection for our product candidates.

Additional information regarding these factors can be found in Verastem Oncology's Annual Report on Form 10-K for the fiscal year ended December 31, 2020 and in any subsequent filings with the SEC, including in the sections thereof captioned "Risk Factors" and "Forward-Looking Information and Factors that May Affect Future Results," as well as in our subsequent reports on Form 8-K, all of which are filed with the U.S. Securities and Exchange Commission (SEC) and available at www.sec.gov and www.verastem.com.

The forward-looking statements in this presentation speak only as of the original date of this presentation, and we undertake no obligation to update or revise any of these statements.

We are a biopharmaceutical company committed to developing and commercializing new medicines for patients battling cancer

Well Positioned to Capitalize on Growth Opportunities

New lead clinical program has best-in-class potential

VS-6766 (RAF/MEKi) and defactinib (FAKi) are clinically active against RAS mutant cancers

Rapid development paths to market

Significant downstream market opportunity and blockbuster potential

Strong balance sheet

Validating clinical results achieved in low-grade serous ovarian cancer (LGSOC), strong signal in KRAS G12V mutant NSCLC; registrationdirected trials initiated in 4Q 2020; FDA Breakthrough Therapy Designation in LGSOC

30% of all human cancers are driven by mutations in RAS family of genes;VS-6766 combinations broadly applicable across a variety of tumor types, with preclinical synergy shown with an extensive number of agents including KRAS GI2C inhibitors

Monetization of COPIKTRA® (duvelisib) provides funding until at least 2024

Cash Balance of \$114.1 million, as of June 30, 2021

Debt reduced from approx. \$185M to \$0M (2019-2021)

Annual operating expense forecast of approximately \$55-60 million

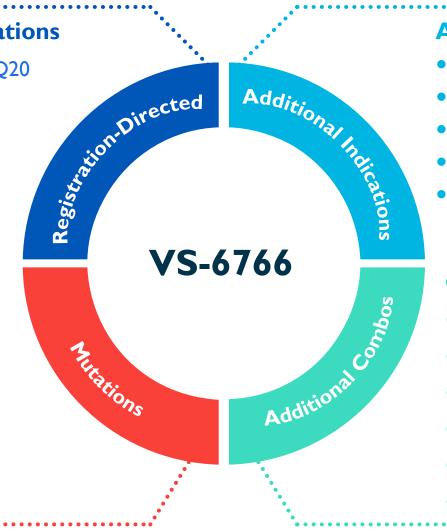
Verastem Oncology Strategic Transformation

VS-6766 RAF/MEK Inhibitor Program Overview

VS-6766 is a differentiated, best-in-class asset potentially applicable across multiple patient populations

- Unique dual RAF/MEK targeting mechanism of action
- Best-in-class safety & tolerability profile relative to marketed MEK inhibitors, with potential for combinability with agents from multiple target classes
- Novel intermittent dosing schedule; convenient oral regimen
- Clear signals of clinical activity in various RAS-driven cancers, including in patients whose tumors previously progressed on other MEK inhibitors
- Strong preclinical and clinical synergy data in combination with other agents targeting RAS pathway and parallel pathways

High Priority Lead Indications with Multiple Growth Opportunities


High Priority Registration Indications

Registration-Directed Trials Initiated in 4Q20

- LGSOC^{1,2}
- KRAS^{GI2V} NSCLC^{1,2}

Mutation Opportunities

- KRAS mutations^{1,2}
- BRAF & NRAS mutations^{1,2}
- NFI mutations
- GNAQ mutations²

Additional Indication Opportunities

- Pancreatic^{1,2} (10 pt cohort initiated)
- KRAS mt endometrioid¹ (10 pts initiated)
- Uveal Melanoma² (IST initiated)
- Melanoma^{1,2}
- Colorectal¹

Other VS-6766 Combinations

- Everolimus^{1,2}
- KRAS GI2C inhibitor²
- SHP2 or SOSI inhibitor²
- CDK4/6 inhibitor²
- EGFR inhibitor²
- Anti-PD-1

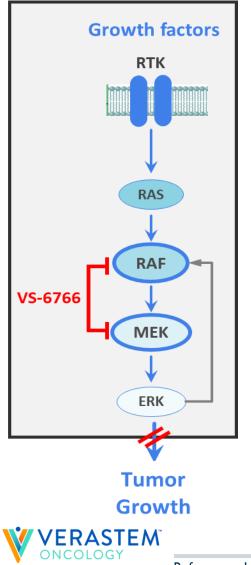
¹ Supported by clinical data

² Supported by preclinical data

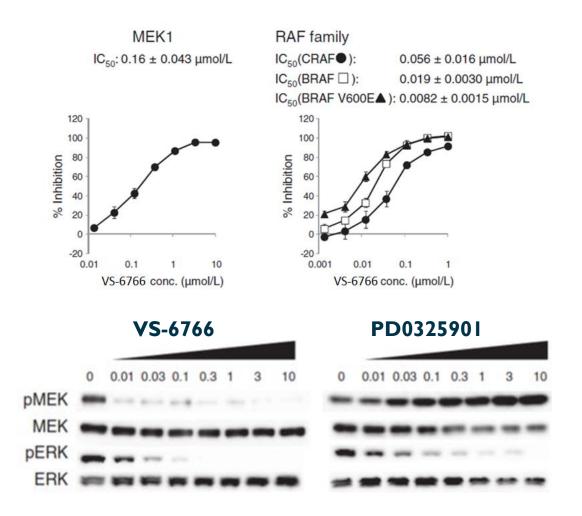
Robust Pipeline Targeting the RAS Pathway and Multiple Growth Opportunities

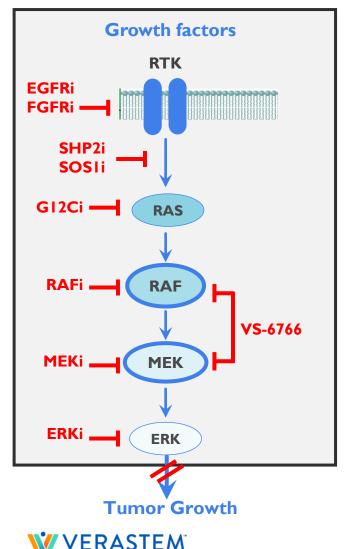
VS-6766 + DEFACTINIB	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	MARKET
RAMP-201 ¹ KRAS mt/wt LGSOC			FDA	Breakthrough Therapy Designa	tion for VS-6766 + defactir
RAMP-202 ¹ KRAS mt G12V NSCLC					
FRAME study Advanced LGSOC			7		
FRAME study Advanced KRAS mt NSCLC			7		
FRAME study Advanced CRC			7		
FRAME study Advanced KRAS-G12V mt NSCLC			7		
FRAME study Advanced pancreatic cancer			7		
FRAME study Advanced KRAS mt endometrioid cancer			7		
Metastatic uveal melanoma					

VS-6766 + OTHER COMBINATIONS	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	MARKET
KRAS mt NSCLC VS-6766 + everolimus (mTORi)					


*Pre-clinical studies ongoing in multiple KRAS mutant tumors

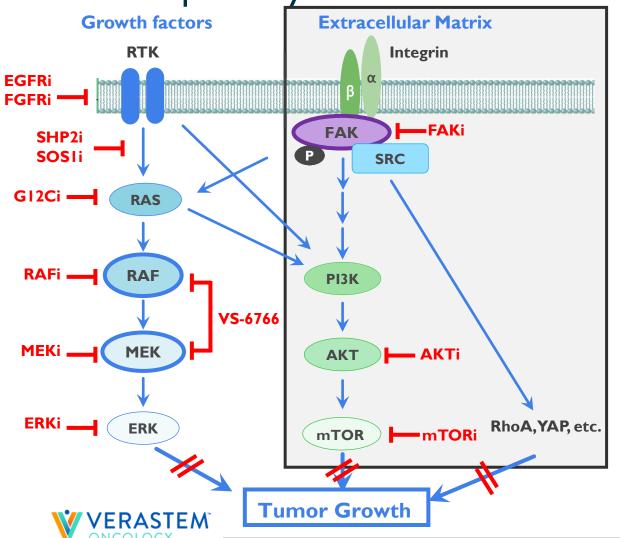
¹ Registration-directed trial


RAMP 201 study = NCT04625270 RAMP 202 study = NCT04620330 FRAME study = NCT03875820


VS-6766 is a Unique Small Molecule RAF/MEK Inhibitor

- VS-6766 inhibits both MEK & RAF kinase activities
- MEK inhibitors paradoxically induce MEK phosphorylation (pMEK) by relieving ERK-dependent feedback inhibition of RAF
- By inhibiting RAF phosphorylation of MEK, VS-6766 has advantage of not inducing pMEK
- VS-6766 inhibits ERK signaling more completely; may confer enhanced therapeutic activity

Vertical Blockade: Establishing VS-6766 as the backbone of therapy for RAS pathway-driven tumors


Current Challenges

- Blocking any single target in the pathway is insufficient for maximum depth and duration of anti-tumor efficacy
 - e.g., SHP2i, KRAS-G12Ci, RAFi, MEKi, ERKi
- Vertical inhibition concept is now well established
 - Necessary to block more than I target in the pathway
- Many of these agents (e.g., SHP2i, MEKi) have poor tolerability as monotherapy and in combination

Solutions offered by VS-6766

- Vertical inhibition (RAF and MEK blockade) in a single drug
- Best-in-class tolerability with established twice weekly dosing regimen
 - Should enable tolerable combinations
- Compelling synergy data (preclinical) emerging for VS-6766 combinations (e.g., with KRAS-GI2C inhibitors)

Parallel Pathway Blockade: Establishing VS-6766 as the backbone of therapy for RAS pathway-driven tumors

Current Challenges

- Blocking Ras pathway can be circumvented through parallel pathways
 - e.g., PI3K/AKT/mTOR, FAK, RhoA, YAP
- Combinations of MEKi + AKTi have shown poor tolerability

Solutions offered with VS-6766

- Good tolerability with twice weekly VS-6766 opens up intermittent dosing options for combinations
- Compelling preclinical synergy data with VS-6766 in combination with FAK inhibition and with AKT pathway inhibition (e.g., everolimus)
- RP2D established for VS-6766 + defactinib and for VS-6766 + mTORi (everolimus) with twice weekly regimen (Udai Banerji, 3Q20)

VS-6766 +/- Defactinib in Low-Grade Serous Ovarian Cancer

Favorable Tolerability Profile with Novel Intermittent Dosing Regimen

Summary of Adverse Events Grade \geq 3 Occurring in \geq 5% of patients

	VS-6766 monotherapy Daily at MTD N=6 28-day cycle	RP2D VS-6766 monotherapy 4mg twice weekly N=26 28-day cycle	RP2D (VS-6766 3.2mg twice weekly + defactinib 200mg twice daily) N=38 21 days of 28-day cycle
Treatment Related Adverse Event	Grade ≥3	Grade ≥3	Grade ≥3
Rash	3 (50%)	5 (19%)	2 (5%)
CK elevation (Creatine phosphokinase)	I (17%)	2 (8%)	2 (5%)

Summary of FRAME Safety Profile

Most Adverse Events (AE) were Grade 1/2

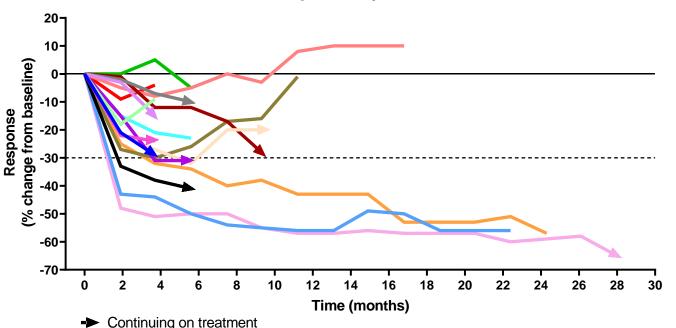
Few patients have discontinued due to AEs in the study

Favorable Tolerability Profile at Recommended Phase 2 dose for VS-6766 plus defactinib combination regimen

Treatment Related Adverse Events Details* (≥10% patients in cohort 3.2mg 6766 and Def 200mg)	VS-6766 4mg Twice Weekly (4 wks of every 4 wks) ¹ n=22		VS-6766 3.2mg Twice Weekly Def 200mg BID (3 wks of every 4 wks) ² n=38	
	Grl/2	Gr3/4	Grl/2	Gr3/4
Rash	15	5	32	2
CK Elevation	13	2	19	2
AST Elevation	I		13	
Hyperbilirubinemia			14	I
Visual Disturbance	13		9	
ALT Elevation	2		5	
Diarrhoea	6	I	14	L
Fatigue	5	I	8	L
Oral Mucositis [^]	7	I	11	
Nausea	5		5	
Vomiting	2		4	
Peripheral Edema	9		10	
Paronychia	3		4	
Thrombocytopenia			6	
Pruritus	3	0	5	

Summary of FRAME Safety Profile

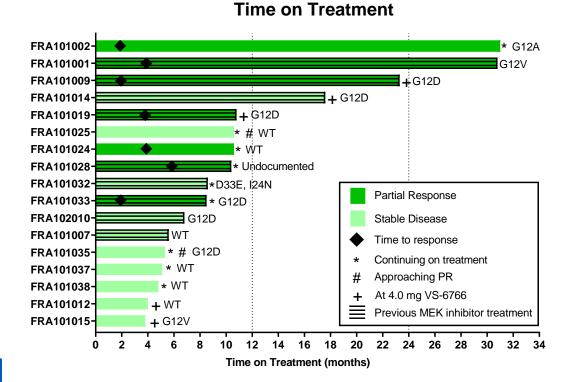
- Most Adverse Events (AE) were Grade 1/2
- Few patients have discontinued due to AEs in the study


RP2D

- VS-6766 3.2 mg oral twice wkly (3 wks of every 4 wks)
- **Defactinib 200 mg** oral BID (3 wks of every 4 wks)

*AEs were graded by NCI CTC v4; highest grade only recorded for each patient; AEs presented in ≥10% Patient (cohort 3.2mg 6766 and Def 200mg) data preliminary and subject to change; ^also includes glossitis/mouth ulcers

VS-6766 in Combination with Defactinib Shows Robust ORR with Durability in Refractory LGSOC with Expanded Number of Patients (n=17)



Response by RECIST

- KRAS-G12 mutations ORR = 56% (5/9); data still maturing
- Current ORR = 41% (7/17); data still maturing
- PRs observed in patients who previously progressed on MEKi
- 9/17 (53%) still on study¹
- 3 pts on treatment for ~2 yrs or more

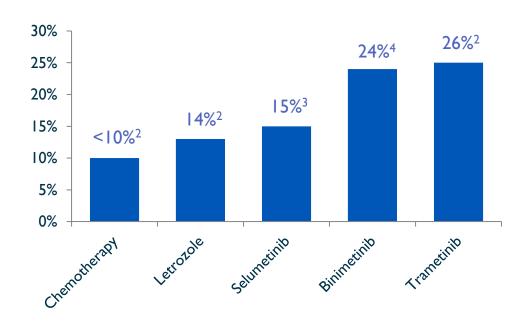
VERASTEM ONCOLOGY

Reference: Banerji, RAS-Targeted Drug Development, Sept 2020 ¹ Data cutoff date August 17, 2020

In an updated Dec. 2020 read-out (n=24), ORR data has continued to strengthen, in both KRAS mt and KRAS wt patients, with a consistent safety profile

- Overall response rate (ORR) is 52% (11 of 21 response evaluable patients)
 - KRAS mutant ORR at 70% (7 of 10 response evaluable patients)
 - KRAS wild-type ORR at 44% (4 of 9 response evaluable patients)
 - KRAS status undetermined ORR at 0% (0 of 2 response evaluable patients)
- As reported previously, the most common side effects seen in the study were rash, creatine kinase elevation, nausea, hyperbilirubinemia and diarrhea, most being NCI CTC Grade 1/2 and all were reversible

May 2021: FDA granted Breakthrough Therapy designation for VS-6766 + defactinib for treatment of patients with recurrent low-grade serous ovarian cancer (LGSOC) after one or more prior lines of therapy, including platinum-based chemotherapy


References: Verastem Oncology Receives Breakthrough Therapy Designation for VS-6766 with Defactinib in Recurrent Low-Grade Serous Ovarian Cancer (https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-receives-breakthrough-therapy-designation-vs)

LGSOC: Limited Treatment Options with High Unmet Need

Low-Grade Ovarian Cancer – Treatment Algorithm¹ Stage IA-IB **Stage IC** Stage II-IV Pt Chemo Combo: Carbo-Pt + Paclitaxel (preferred) **Observe only** + Beva for Stage II-IV (incl maintenance Beva) OR Hormonal Tx (2B) Recurrence **Pt-Sensitive Pt-Resistance** Pt-Chemo combo +/-• Taxane or gemcitabine, or doxorubicine, or Beva topotecan +/- Beva Trametinib **References:** • Trametinib • Fulvestrant ¹ NCCN guidelines • Fulvestrant ² Gershenson, et al. ESMO 2019. ³ Farley, et al. Lancet Oncology, 2013. ⁴ Grisham, Monk, Banerjee, et al. IGCS 2019.

′ERASTEM°

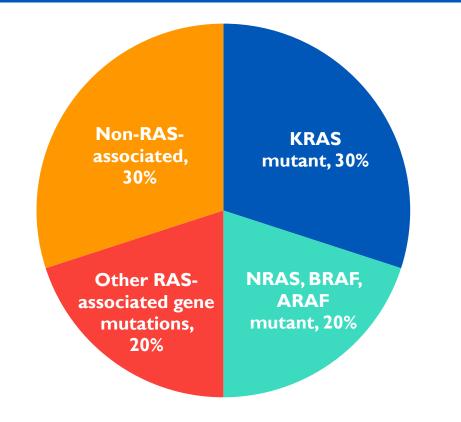
Limited Response Rates for Available Treatments:

- 31-35% discontinuation rate with MEK inhibitors due to AEs
- Few discontinuations in the FRAME study due to AEs

17

70% of LGSOC tumors driven by mutations in the RAS pathway

LGSOC is a type of ovarian cancer that disproportionately affects younger women

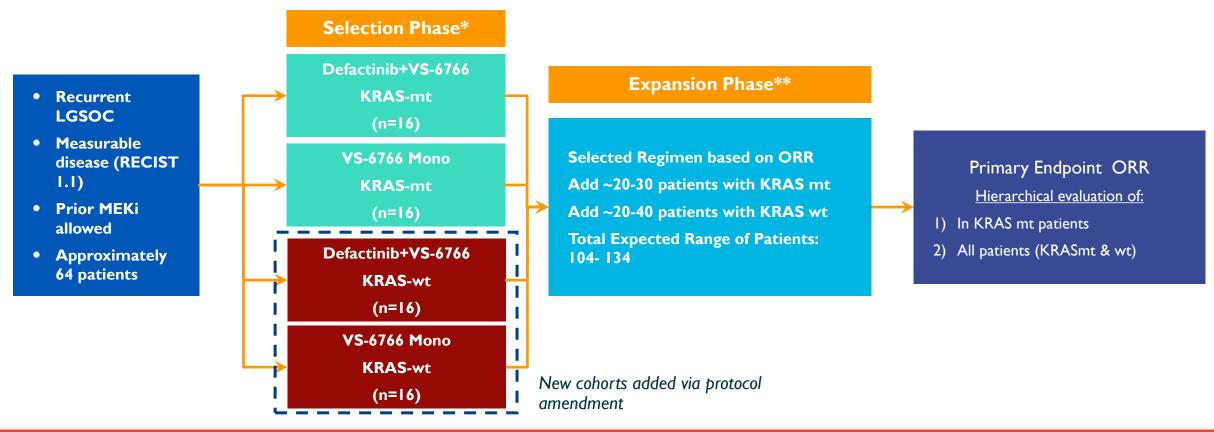

1,000 to 2,000 patients in the U.S. and 15,000 to 30,000 worldwide diagnosed with LGSOC each year

A slow growing cancer, that has a median survival of almost 10 years, so patients remain in treatment for a long time (10-yr prevalence ~80,000 worldwide, ~6,000 US)

Patients often experience significant pain and suffering from their disease over time

Most prior research has focused on high grade serous ovarian cancer (HGSOC). However, LGSOC is clinically, histologically and molecularly unique from HGSOC with limited treatments available

~30% of LGSOC Patients Have KRAS mt ~70% of LGSOC Shows RAS Pathway-Associated mts



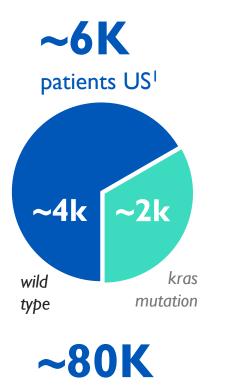
References: AACR Project GENIE Cohort v9.0-public and Verastem unpublished analysis

Reference: Monk, Randall, Grisham, The Evolving Landscape of Chemotherapy in Newly Diagnosed Advanced Epithelial Ovarian Cancer, Am Soc Clin Oncol Educ Book; 2019; Slomovitz, Gourley, Carey, Malpica, Shih, Huntsman, Fader., Grisham et al, Low-Grade serous ovarian cancer: State of the Science; Gynecol Oncol; 2020. Grisham, Iyer, Low-Grade Serous Ovarian Cancer: Current Treatment Paradigms and Future Directions; Curr Treat Options Oncology; 2018.

RAMP 201: KRAS Mutated (mt) and Wild Type (wt), Phase 2, Recurrent LGSOC Adaptive Design for Potential Accelerated Approval

FDA Was Supportive of Development Strategy, Adaptive Design, and Addition of KRAS wt to Selection Phase

Registration-directed Study Commenced in Nov. 2020 with estimated Primary Completion Date for the Expansion Phase of June 2023 (clinicaltrials.gov)



*Dosing: Defactinib + VS-6766 combo: Defactinib 200mg PO BID: 21/28 days + VS-6766 3.2mg PO 2x/wk 21/28 days; VS-6766 monotherapy: VS6766 4.0 mg PO 2x/wk 21/28 days **Expansion Phase – final sample size to be adjusted based on adaptive design

19

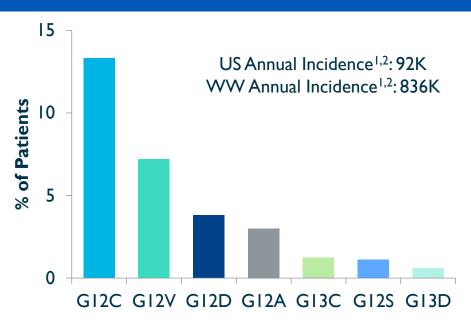
LGSOC market opportunity larger or comparable to other high unmet need KRAS opportunities

Prevalence

patients WW¹

Patient-months of Therapy Per Year² (across all 2L+ patients)

¹ References: Monk, Randall, Grisham, The Evolving Landscape of Chemotherapy in Newly Diagnosed Advanced Epithelial Ovarian Cancer, Am Soc Clin Oncol Educ Book; 2019; Slomovitz, Gourley, Carey, Malpica, Shih, Huntsman, Fader., Grisham et al, Low-Grade serous ovarian cancer: State of the Science; Gynecol Oncol; 2020. Grisham, Iyer, Low-Grade Serous Ovarian Cancer: Current Treatment Paradigms and Future Directions; Curr Treat Options Oncology; 2018; Globocan 2020
 ² Patient-months of Therapy metric calculated by multiplying relevant incidence/prevalence rate times estimated duration of therapy; represents US market opportunity only; patient population estimates from Globocan 2020, American Cancer Society 2021, AACR Genie Cohort V9.0 public, and scientific publications. Duration of therapy estimates from clinical studies and clinician experience. Patient-months on therapy is for 2nd-line+ patients

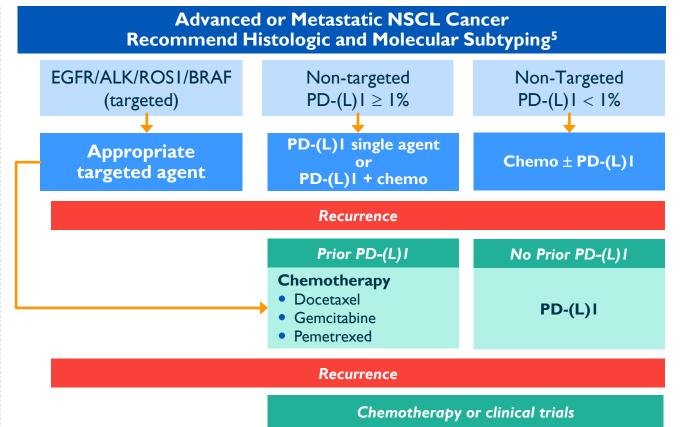

³ NSCLC KRAS G12C 2nd line patients (incidence); Pancreatic RAS/RAF mutant 2nd-line patients (incidence); LGSOC KRAS mutant and wild-type patients (prevalence); Endometrioid RAS/RAF mutant 2nd-line patients (incidence); Uveal melanoma RAS/RAF mutant 2nd-line patients (incidence)

20

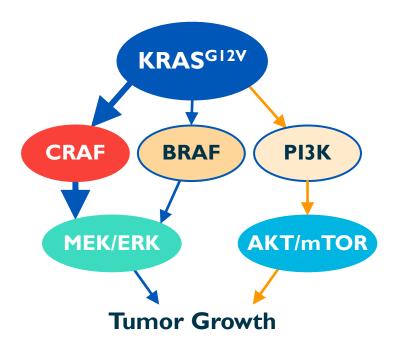
VS-6766 +/- Defactinib in NSCLC

High Unmet Need in Refractory KRASm NSCLC Adenocarcinoma

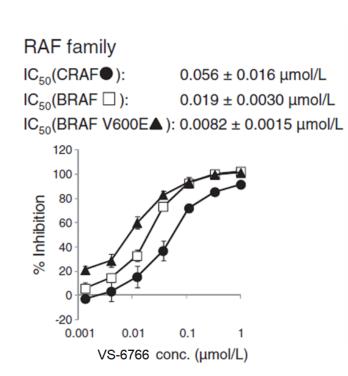
NSCLC Adenocarcinoma³


KRAS Mutation

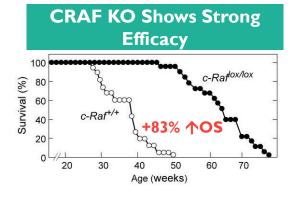
KRAS Mutations Represent 25% of Lung Cancer Adenocarcinoma (EGFR 17%, ALK 7%)⁴

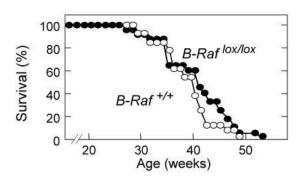

References: ¹ Globocan, 2018 ² <u>https://www.ncbi.nlm.nih.gov/books/NBK519578/</u> ³ TCGA PanCancer Atlas (cBioPortal analysis) ⁴ www.thelancet.com Vol 389 January 21, 2017

⁵ Adapted from NCCN Non-small cell lung cancer guidelines Version 3.2020

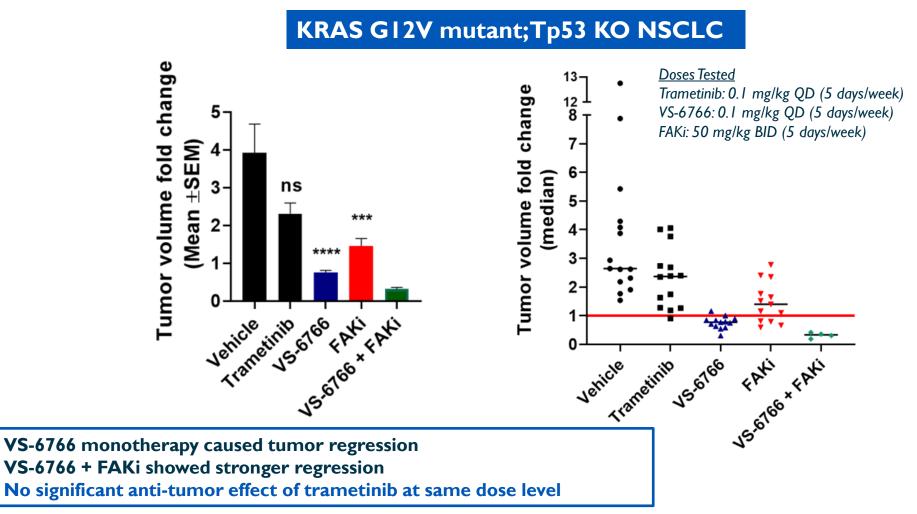


- SOC in recurrent disease is chemotherapy
- Pre-PD-(L) I era, chemotherapy response rate ~10% in recurrent disease; 12w PFS of 30–45%


VS-6766 Inhibits CRAF - The key driver of KRAS-GI2V mutant NSCLC A Precision Approach to KRAS-GI2V Driven NSCLC


- KRAS^{G12V} signals mainly through RAF/MEK in contrast to other variants, such as KRAS-G12D, which signal more through PI3K/AKT
- KRAS^{G12V} models are especially dependent on CRAF

CRAF Drives KRAS G12V NSCLC¹


BRAF KO Has No Effect

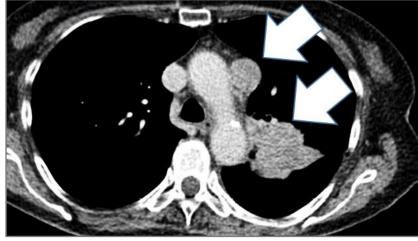
CRAF, but not BRAF, ablation improves survival of mice with KRAS^{G12V} induced lung cancer in vivo

VS-6766 +/- FAKi induces significant tumor regression in KRAS GI2V mt NSCLC in vivo model, with clear differentiation from trametinib

٠

٠

Case Study: Response to VS-6766 + defactinib in a patient with KRAS GI2V mutant NSCLC VS-6766 + Defactinib


May 2019: Diagnosed with NSCLC

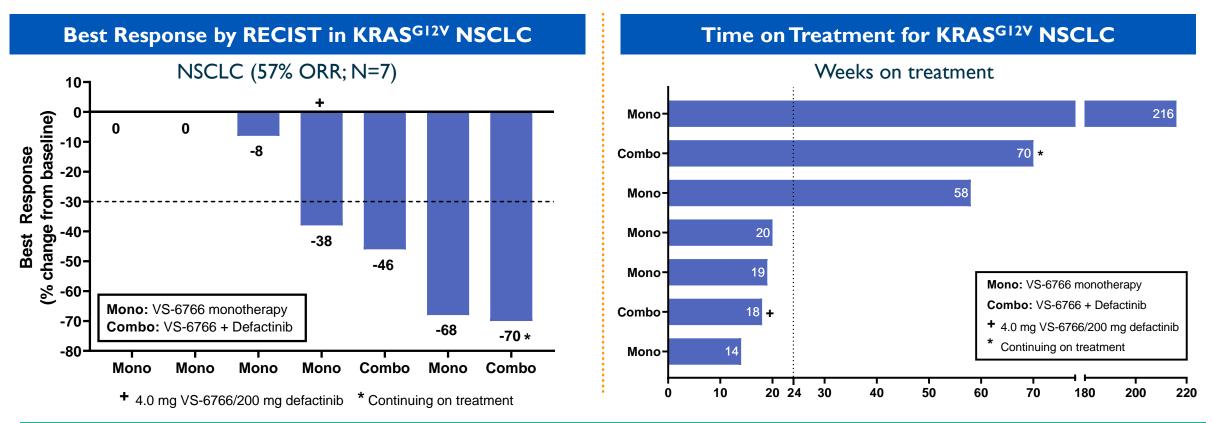
June 2019 - Sept 2019: Treated with first line Carboplatin + Pemetrexed + Pembrolizumab

Oct 2019: Progression, palliative RT to right hip


Nov 2019 – present: On treatment in FRAME study VS-6766 + Defactinib

Pre-treatment Oct 2019

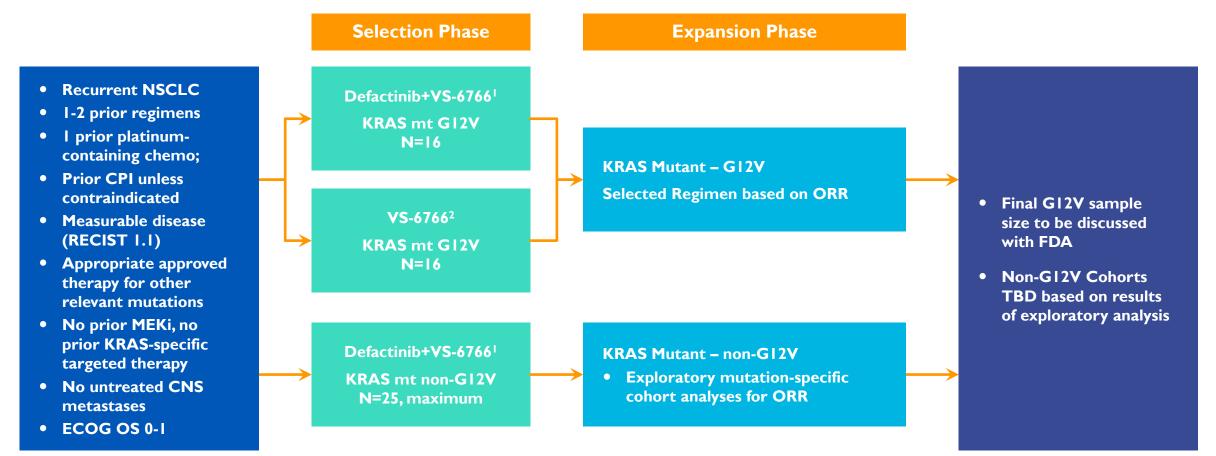
On-treatment Feb 2021



Reference: Krebs et al. AACR 2021

Strong Signal Identified in KRASG12V to Be Further Validated

VS-6766 ± Defactinib Has a Confirmed 57% ORR in KRAS^{G12V} NSCLC in Integrated Analysis

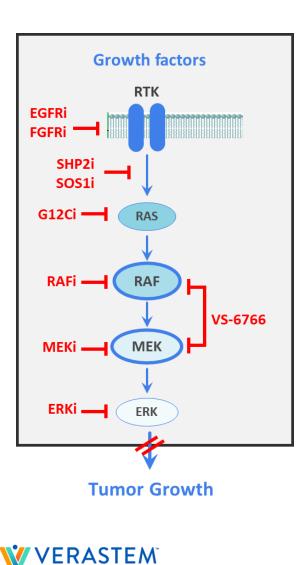


- Preclinical evidence suggests combination with Defactinib may improve efficacy in KRAS^{G12V} NSCLC
- Activity of VS-6766 as a single agent and in combo with Defactinib in KRAS^{G12V} NSCLC

References: ¹ Guo, et al Lancet Oncology 2020 ² Krebs, AACR April 2021 (March 18, 2021 cutoff)

NSCLC Clinical Strategy: KRAS Mutant (mt), Enriched G12V, Phase 2, Recurrent NSCLC for Potential Accelerated Approval

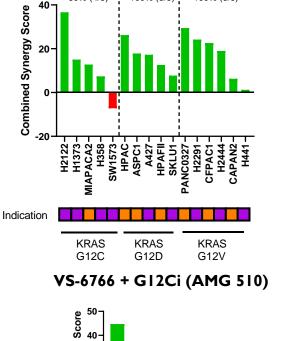
This Registration-directed Phase 2 Study commenced December 2020 with an estimated Primary Completion Date for the Expansion Phase of March 2023 (clinicaltrials.gov)

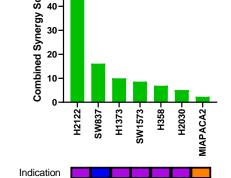

VERASTEM[®] ONCOLOGY

References:¹ Defactinib 200 mg PO BID (21/28 days) + VS-6766 3.2 mg PO 2x/wk (21/28 days)

Future Opportunities: VS-6766 as Backbone of RAS Therapy

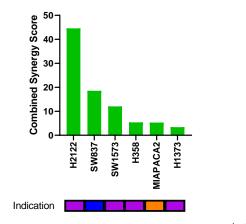
Vertical Blockade: Preclinical synergy in combination with several promising targets VS-6766 + SOSIi (BI-3406)


100% (6/6)



ONCOLOGY

VS-6766 + pan-HERi (Afatinib)


100% (5/5)

VS-6766 + G12Ci (MRTX849)

VS-6766 + ERK1/2i (LY3214996)

KRAS

G12D

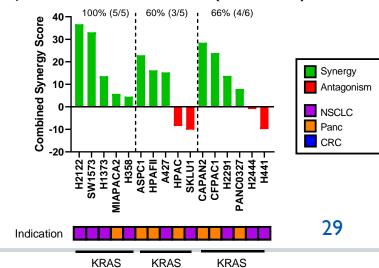
KRAS

G12C

G12C

AFIL

100% (5/5) 60% (3/5)


40

Combined Synergy Score

83% (5/6)

KRAS

G12V

G12D

G12V

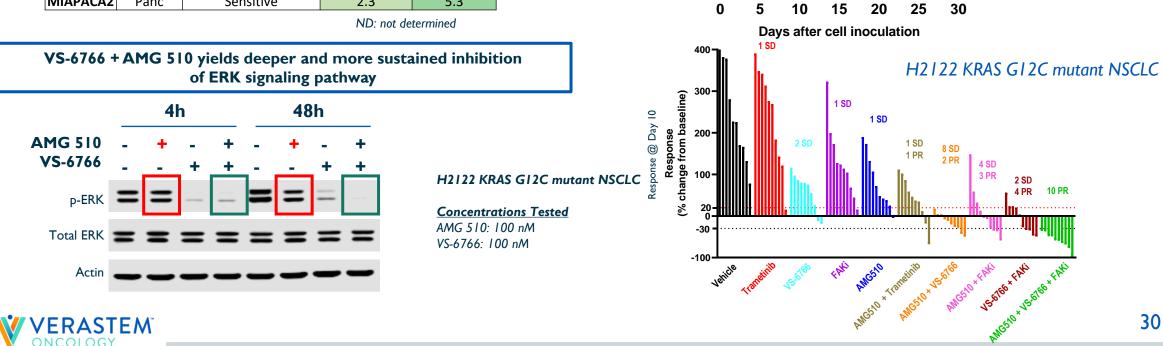
Reference: Coma et al., AACR 2021

Preclinical synergy of VS-6766 + GI2C inhibitors in KRAS GI2C mt models

2000-

1500

1000


500

SEM) volume

Tumor vc (mm³ +/-

Synergy of VS-6766 + G12C inhibitor AMG 510 across GI2C mutant NSCLC, CRC & Pancreatic cancer cell lines

			Combined Synergy Score	
Cell line	Indication	Sensitivity to G12C inhibitors	VS-6766 + AMG 510	VS-6766 + MRTX849
H2122	NSCLC	Moderately sensitive	44.7	44.6
H1373	NSCLC	Sensitive	10.0	3.4
SW1573	NSCLC	Insensitive	8.6	12.0
H358	NSCLC	Sensitive	6.9	5.4
H2030	NSCLC	Moderately sensitive	5.1	ND
SW837	CRC	Sensitive	16.1	18.5
MIAPACA2	Panc	Sensitive	2.3	5.3

VS-6766 & FAKi potentiate AMG 510 efficacy in KRAS G12C mutant NSCLC in vivo; Tumor regression in all mice with triple combination

Vehicle

VS-6766

AMG510

AMG510 + FAKi

AMG510 + VS-6766

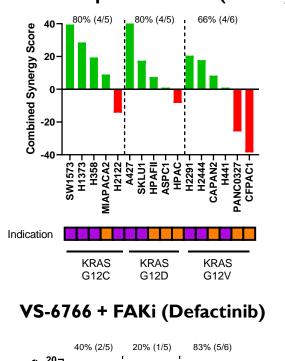
AMG510 + VS-6766 + FAKi

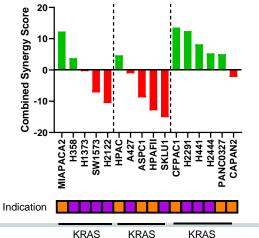
Doses Tested

Trametinib: 0.3 mg/kg QD

VS-6766: 0.3 mg/kg QD

FAKi: 50 mg/kg BID AMG 510: 30 mg/kg QD


Reference: Coma et al., AACR 2021


Parallel Pathway Blockade: Two synergistic combinations already progressed to clinical stage vs-6766 + p7056K/AKTi (M2698) vs-6766 + mTORi (Everolimus)

VERASTEM

ONCOLOG'



G12D

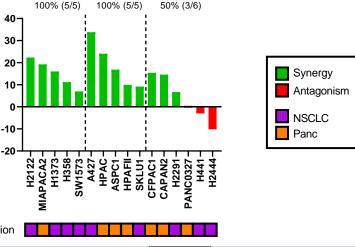
G12V

G12C

Score

Synergy

Combined


Indication

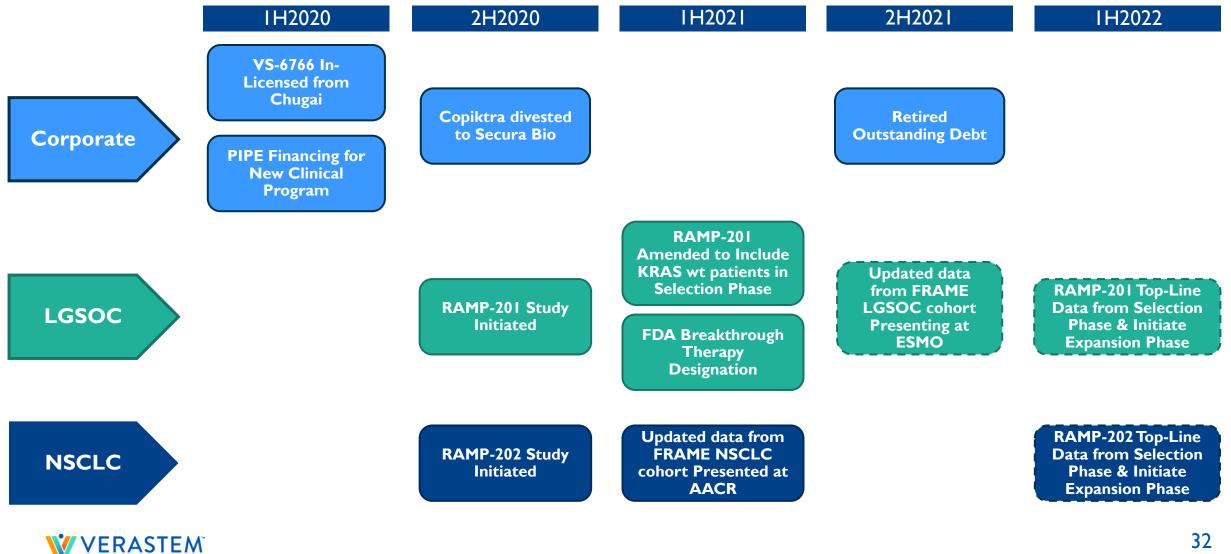
KRAS

G12C

KRAS

G12D

KRAS


G12V

Reference: Coma et al., RAS-Targeted Drug Discovery, Feb 2021

KeyVSTM Milestones 2020-2022

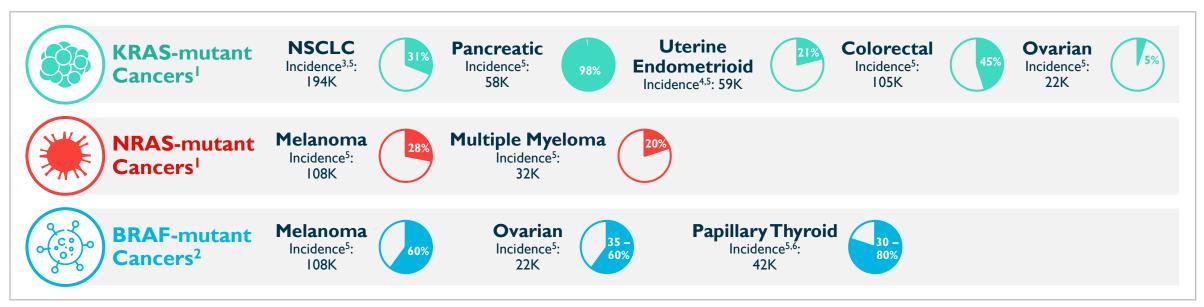
ONCOLOGY

Corporate

Key Financial Statistics

As of June 30, 2021

Cash, cash equivalents & investments	\$114.1M
Shares fully diluted	196.2M
5.00% Convertible Senior Notes Due 2048 (2018 Notes)	\$0.3M**
5.00% Convertible Senior Notes Due 2048 (2020 Notes)	\$28.0M*
Insider ownership (outstanding / vested)	8.7% / 5.0%


* The 2018 Notes have an initial conversion rate of 139.5771 shares of Common Stock per \$1,000 which translates to an initial conversion price of \$7.16 per share of Common Stock.

** On July 16, 2021, all of the \$28.0 million aggregate principal of the 2020 Notes have converted into approximately 8.6 million common shares of the Company's common stock. As such, there is \$0 aggregate principal outstanding of 2020 Notes.

Backup Slides

High Unmet Needs in RAS/RAF/MEK/ERK-Driven Cancers

Breadth of potential opportunity

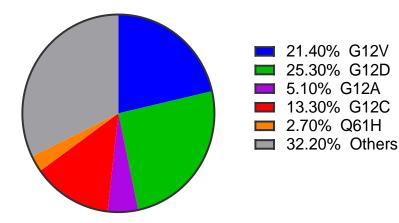
 30% of all human cancers are driven by mutations of the RAS family of genes⁶

Established prognostic significance

• Patients with mutations of the RAS family have an overall worse prognosis

Challenges with conventional approaches

- Modest progress; limited number of approved therapies
- Single agent therapies (e.g., MEK inhibitors) associated with resistance
- Tolerable combination regimens with MEK inhibitors have been challenging
- Current RAS inhibitors in development address only a minority of all RAS mutated cancers


Incidence References:

VERASTEM ONCOLOGY ¹Reference for RAS mt frequencies – Cox et al. *Nature Reviews* 13: 828, 2014; ²Reference for BRAF mt frequencies – Turski et al. *Mol Cancer Ther* 15: 533, 2016 ³85% of lung cancer is NSCLC (Lu et. al. *Cancer Manag Res.* 2019); ⁴90% of all uterine cancers are of the endometrial type (ACS); ⁵Cancer Statistics 2020, Siegel et. al. *CA Cancer J Clin* 2020;70:7-30; ⁶8 out of 10 thyroid cancers are of the papillary type (ACS) References:

McCormick F Clin Cancer Res 15April2015; ⁶Adderley H et al. EBioMedicine 01Mar2019; Papke B et al. Science 17Mar2017; Ryan M et al. *Nature Reviews Clinical* Oncology 01Oct2018; NIH cancer.gov/research/key-initiatives/ras 36

KRAS GI2V and GI2D Represent ~50% of KRAS Mutations across Human Cancers

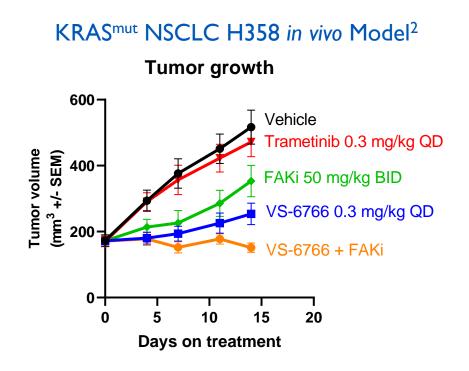
% frequency in a total of 780 cancer patients with KRAS mutations¹


References:

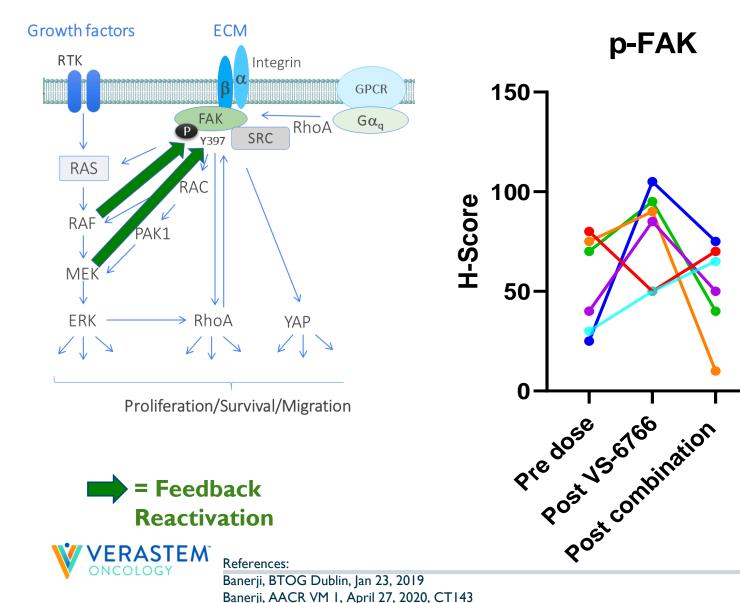
¹ TCGA PanCancer Atlas (cBioPortal analysis)

² 90% of all uterine cancers are of the endometrial type (ACS)

³ Cancer Statistics 2020 (Siegel et al. CA Cancer J Clin 2020; 70:7-30)



VS-6766 and FAK inhibitor combination leads to more robust anti-tumor efficacy in vivo


500-Vehicle 400 Tumor volume (mm³ +/- SEM) 300-Trametinib 1.5 mg/kg QD 200 FAKi 50 mg/kg BID VS-6766 1.5 mg/kg QD 100 VS-6766 + FAKi 0 15 5 10 Days on treatment

ERASTEM

KRAS^{mut} Ovarian TOV-21G in vivo Model¹

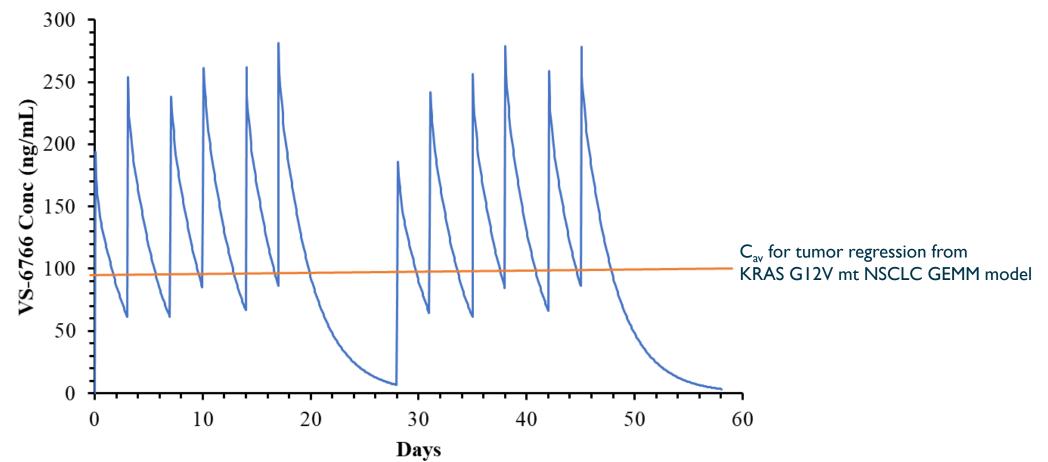
Overcoming Key Resistance Mechanisms to MEK Inhibitors

- MEK inhibition induces compensatory activation of pFAK preclinically and clinically
 - Trametinib induced ↑ pFAK (Y397) preclinically in KRAS mt NSCLC cell lines
 - Also observed in patients

 - Combination with defactinib reduced this compensatory pFAK signal

Pharmacokinetic Profiles of VS-6766 + Defactinib in Combination Similar to that seen in Single Agent Studies

Cohort	Dose (mg)	N	Subject	AUC _{0-24h} (h*ng/mL)	C _{max} (ng/mL)
I	3.2 (with 200mg VS)	3	Mean	6179	354
			CV%	32.1	30.4
2a	4 (with 200mg VS)	5	Mean	5353	289
			CV%	15.8	16.0
2b	3.2 (with 400mg VS)	I	FRA101-007	3302	229


VS-6766

Defactinib

Cohort	Dose (mg)	N	Subject	AUClast (h*ng/mL)	Cmax (ng/mL)
I	200 (with 3.2mg RO)	3	Mean	2071	273
			CV%	103	80
2a	200 (with 4mg RO)	5	Mean	2252	318
			CV%	124	117
2b		3	Mean	2807	360
	400 (with 3.2mg RO)		CV%	31	32

Target exposure for preclinical tumor regression is covered by twice weekly dosing of 4 mgVS-6766 3 wks on/1 wk off

• Modeling of PK for 4 mgVS-6766 2/wk, 3 wks on/1 wk off, based on 4 mg single dose PK data (study NO21895)

• Relationship to average exposure for tumor regression in KRAS G12V mt NSCLC mouse model

VERASTEM

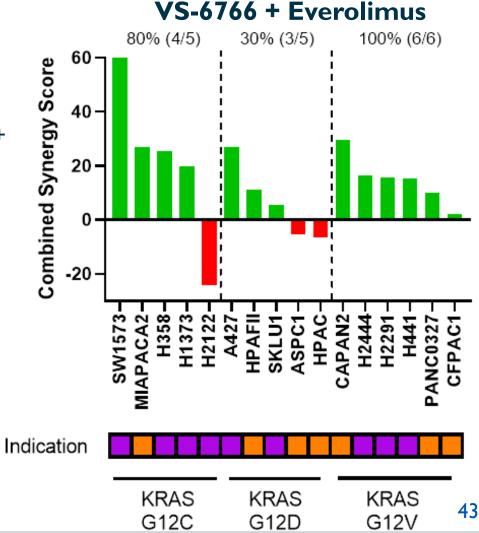
ONCOLOG

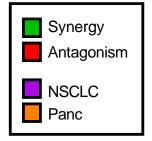
VS-6766 in Combination with Defactinib Shows Robust ORR with Durability in Refractory LGSOC at Phase 2 Dose Level

All patients on RP2D: 3.2 mgVS-6766 (2x/wk) + 200 mg Defactinib (BID) q3/4 wks

Response by RECIST 20-FRA101002-* G12A 10-(% change from baseline) FRA101001 G12V * # WT FRA101025 ·10-FRA101024 * WT Response * Undocumented FRA101028 Partial Response -20-FRA101032-D33E. I24N Stable Disease -30· FRA101033-G12D Time to response -40-G12D FRA102010-Continuing on treatment -50· FRA101035-* # G12D Approaching PR # FRA101037-* WT -60- \equiv Previous MEK inhibitor treatment FRA101038-* WT -70 12 18 20 22 26 14 16 20 22 24 26 28 0 2 10 14 16 24 28 30 10 12 18 30 32 34 8 Time (months) Time on Treatment (months) Continuing on treatment • ORR in KRAS mt = 50% (3/6); data still maturing Current overall ORR = 45% (5/11); data still maturing

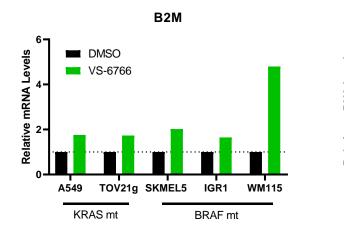
¹ Data cutoff date August 17, 2020

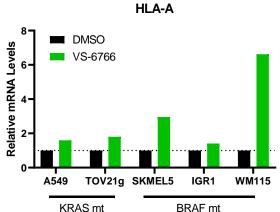

Time on Treatment

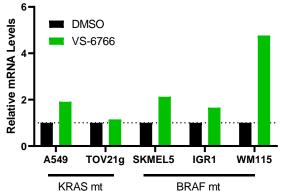

9/11 (82%) still on study at RP2D¹ 2 pts on treatment for 2.5 yrs

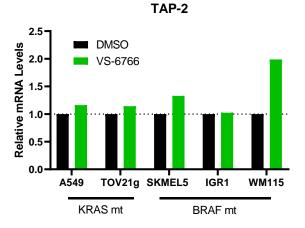
VERASTEM ONCOLOGY

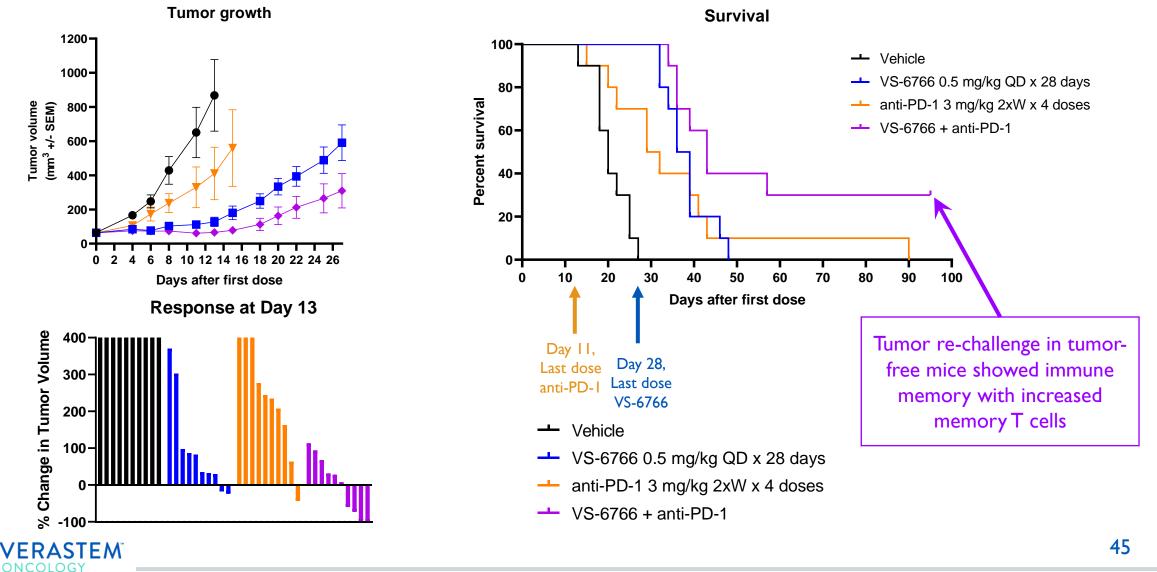
Status: Combination of VS-6766 with Everolimus (mTOR inhibitor)


- Synergy of VS-6766 + everolimus observed broadly across cancer cell lines with various KRAS mutation variants
- A well-tolerated RP2D for VS-6766 + everolimus has been established with intermittent dosing of both agents (twice weekly; 3 wks on/1 wk off)
- KRAS mutant NSCLC expansion cohort is currently ongoing with VS-6766 + everolimus



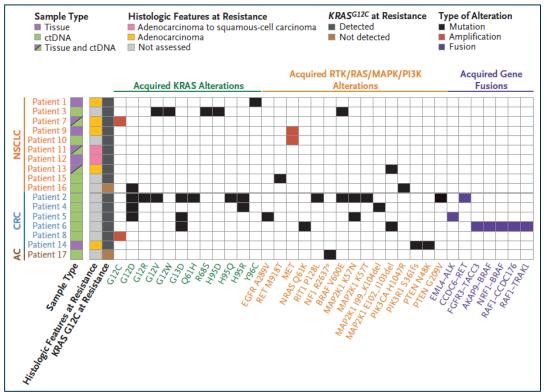



VS-6766 upregulates MHC Class I antigens on tumor cells: a mechanism for potentiation of I/O efficacy



Cell Line	Tumor type	RAS/RAF mutation status
A549	Lung	KRASmut G12S
TOV21g	Ovarian	KRASmut GI3C
SKMEL5	Melanoma	BRAFmutV600E
IGR-I	Melanoma	BRAFmutV600E
WMI15	Melanoma	BRAFmutV600E

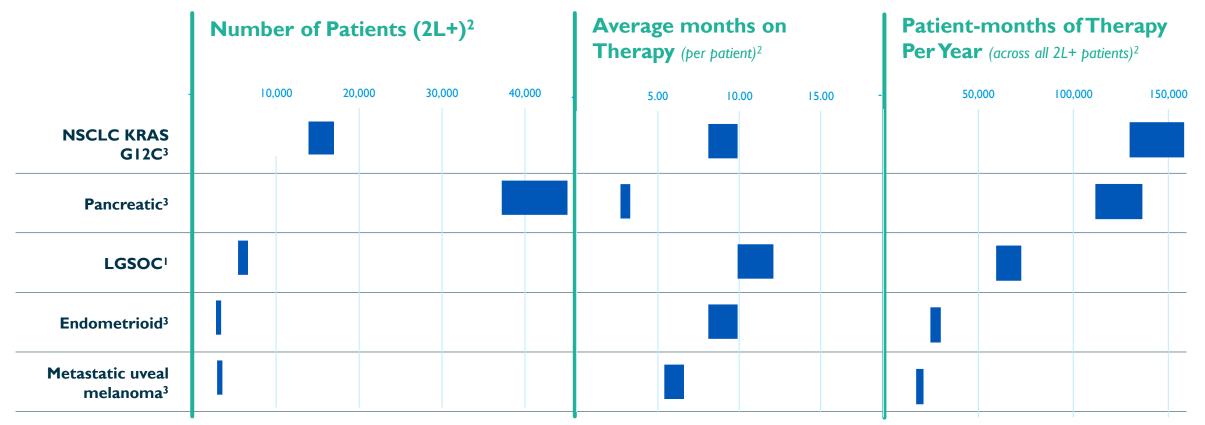
VS-6766 @ I μ M (except SKMEL5 and IGR-I, 300 nM)


Ŵ	VERASTEN ONCOLOGY	
V	ONCOLOGY	

VS-6766 enhances tumor growth inhibition when combined with anti-PD-I in the CT26 KRAS (GI2D) syngeneic model

Reference: Pachter, RAS-Targeted Drug Development, Sept 2020

Acquired resistance mechanisms to KRAS GI2Ci treatment in patients further supports combination of KRAS GI2Ci with VS-6766



Summary of Putative Mechanisms of Acquired Resistance to Adagrasib Treatment (Fig 3 in Awad MM et al., N Engl J Med 2021; 384: 2382-93)

- Mechanisms of acquired resistance to KRAS GI2Ci adagrasib treatment in patients recently reported^{1,2}
- The main resistance alterations occurred in
 - RTK mts or amplifications
 - KRAS mts or amplification
 - NRAS mt
 - BRAFV600E mt, BRAF or CRAF fusions
 - MAP2K1 (MEK1) mt/deletion
- VS-6766 is expected to be effective against these KRAS, NRAS, BRAF and CRAF modifications

LGSOC Market Opportunity – Reference Calculations

¹ Prevalence used for LGSOC patient population estimate. References: Monk, Randall, Grisham, The Evolving Landscape of Chemotherapy in Newly Diagnosed Advanced Epithelial Ovarian Cancer, Am Soc Clin Oncol Educ Book; 2019; Slomovitz, Gourley, Carey, Malpica, Shih, Huntsman, Fader., Grisham et al, Low-Grade serous ovarian cancer: State of the Science; Gynecol Oncol; 2020. Grisham, Iyer, Low-Grade Serous Ovarian Cancer: Current Treatment Paradigms and Future Directions; Curr Treat Options Oncology; 2018; Globocan 2020

² Patient-months of Therapy metric calculated by multiplying relevant incidence/prevalence rate times estimated duration of therapy; represents US market opportunity only; patient population estimates from Globocan 2020, American Cancer Society 2021, AACR Genie Cohort 9.0 public, and scientific publications. Duration of therapy estimates from clinical studies and clinician experience. Number of patients and months on therapy are for 2nd-line+

³ NSCLC KRAS G12C 2nd line patients (incidence); Pancreatic RAS/RAF mutant 2nd-line patients (incidence); Endometrioid RAS/RAF mutant 2nd-line patients (incidence); Uveal melanoma RAS/RAF mutant 2nd-line patients (incidence)

A drug with a Breakthrough designation will have¹...

- Increased communication with FDA during drug development and review
- FDA guidance to ensure that the design of clinical trials are as efficient as practicable
- A cross-disciplinary project lead assigned to the FDA review team and increased involvement of senior managers and experienced review staff
- 32/35 oncology drugs previously granted Breakthrough Therapy designation have been approved by the FDA²
 - The three that are not yet approved are still in development, including VS-6766 + defactinib, and have not yet filed for FDA approval

List of Oncology Drugs that Received Breakthrough Therapy Designation

Sr no.	Proprietary Name	Established Name	Current Approval Status	Company
1.	Zykadia	Ceritinib	Approved	Novartis
2.	Ibrance	Palbociclib	Approved	Pfizer
3.	Keytruda	Pembrolizumab	Approved	Merck
4.	Opdivo	Nivolumab	Approved	Bristol Myers Squibb
5.	Tagrisso	Osimertinib	Approved	Lilly
6.	Alecensa	Alectinib	Accelerated Approval	Genentech
7.	Xalkori	Crizotinib	Approved	Pfizer
8.	Lenvima	Lenvatinib	Approved	Eisai
9.	Tecentriq	Atezolizumab	Approved	Genentech
10.	Rubraca	Rucaparib	Approved	Clovis Oncology
11.	Kisqali	Ribociclib	Approved	Novartis
12.	Zejula	Niraparib	Approved	GSK
13.	Alunbrig	Brigatinib	Accelerated Approval	Takeda
14.	Kisqali Femara Co-Pack	Letrozole & Ribociclib	Approved	Novartis
15.	Tafinlar	Dabrafenib	Approved	Novartis
16.	Mekinist	Trametinib	Approved	Novartis
17.	Verzinio	Abemaciclib	Approved	Lilly
18.	Imfinzi	Durvalumab	Approved	AstraZeneca
19.	Yervoy	Ipilimumab	Approved	Bristol Myers Squibb
20.	Azedra	lobenguane	Approved	Progenics Pharmaceuticals
21.	Lorbrena	Lorlatinib	Approved	Pfizer
22.	Kadcyla	Ado-trastuzumab emtansine	Approved	Genentech
23.	Padcev	Enfortumab vedotin-ejfv	Approved	Astellas Pharma
24.	Enhertu	Fam-trastuzumab deruxtecan- nxki	Approved	Daiichi-Sankyo
25.	Jelmyto	Mitomycin	Approved	UroGen Pharma
26.	Tukysa	Tucatinib	Approved	Seagen
27.	Trodelvy	Sacituzumab Govitecan-hziy	Approved	Gilead
28.	Tabrecta	Capmatinib	Approved	Novartis
29.	Retevmo	Selpercatinib	Approved	Lilly
30.	Gavreto	Pralsetinib	Approved	Blueprint medicines
31.	N/A	VS6766/Defactinib	Not yet approved	Verastem
32.	Lumakras	Sotorasib	Accelerated Approval	Amgen
33.	N/A	177Lu-PSMA-617	Not yet approved	Novartis
34.	Ayvakit	Avapritinib	Approved (Mast Cell Leukemia)	Blueprint Medicines Corp
35.	N/A	Adagrasib	Not yet approved (NSCLC)	Mirati Therapeutics, Inc.

Strong Patent Protection

- COM for VS-6766 to 2027 & defactinib to 2028, Hatch Waxman should extend to 2032
- VS-6766 intermittent dosing regimen until 2038 if granted
- FAK/MEK combination to 2035
- VS-6766/defactinib combination until 2040 if granted
- Method of manufacture for VS-6766 to 2032
- Other activity related to patent protection is ongoing and will continue into the future

Experienced Senior Management Team

Brian Stuglik Chief Executive Officer

- Global VP & Chief Marketing
 Officer Lilly Oncology
- Founding Member Proventus Health Solutions

Daniel Paterson President and Chief Operating Officer

- CEO The DNA Repair Co. (now On-Q-ity)
- PharMetrics (now IMS), Axion

Rob Gagnon Chief Business and Financial Officer

- CFO Harvard Bioscience, Clean Harbors
- VP of Finance Biogen Idec

Cathy Carew Chief People & Organizational Strategy Officer

- Principal HR Collaborative
- Ironwood, ActiveBiotics, Dynogen, Tufts Health Plan

Jonathan Pachter, Ph.D. Chief Scientific Officer

 Head of Cancer Biology – OSI (now Astellas)

Hagop Youssoufian, MSc, M.D.

Head of Medical Strategy

- CMO, BIND Therapeutics, EVP, Progenics,
- CMO & EVP, Ziopharm Oncology, SVP, Imclone

THANK YOU