

Phase I study of the combination of the dual RAF/MEK inhibitor VS-6766 and the FAK inhibitor defactinib: Results of efficacy in low grade serous ovarian cancer

S. Banerjee^{1,2}, R. Grochot^{1,2}, R. Shinde^{1,2}, J. Lima¹, M. Krebs³, R. Rahman³, M. Little³, N. Tunariu^{1,2}, A. Curcean^{1,2}, H. Badham^{1,2}, M. Mahmud², A. Turner^{1,2}, M. Parmar^{1,2}, C. Yap², A. Minchom^{1,2}, J. Lopez^{1,2}, J. de Bono^{1,2}, U. Banerji^{1,2}.

¹The Royal Marsden NHS Foundation Trust, London,

²The Institute of Cancer Research, London,

³The Christie Hospital NHS Foundation Trust, Manchester.

The ROYAL MARSDEN

NHS Foundation Trust

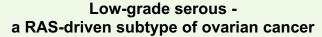
DECLARATION OF INTERESTS

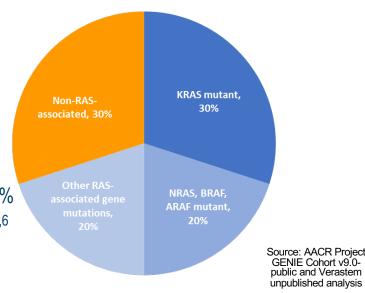
Susana Banerjee

Institutional Research Funding: Astrazeneca, Tesaro, GSK, Lady Garden Foundation Charity, Wellbeing of Women Charity

Personal Fees (Advisory Boards): Amgen, Astrazeneca, Epsilogen, Genmab, Immunogen, Mersana, MSD, Merck Serono, Oncxerna, Pfizer, Roche

Personal Fees (lectures, CME): Amgen, Pfizer, Astrazeneca, Tesaro, GSK, Clovis, Takeda, Medscape, Research to Practice, Peerview

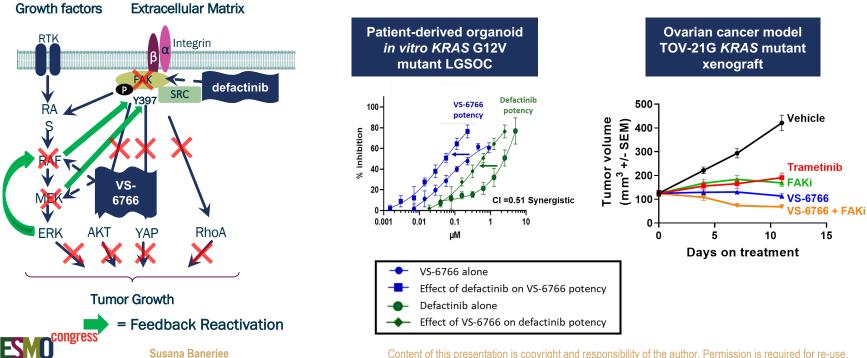

ESMO Director of Membership


Global PI ENGOTov60/GOG3052/RAMP201 trial: Verastem sponsored

Background-Low Grade Serous Ovarian Cancer (LGSOC)

- Rare subtype (up to 5-10% of serous)^{1,2}
- Recurrent: Response to chemotherapy 0-13%^{1,2,4,5}
 hormonal therapy 0-14%^{1,4}
- Single agent MEK inhibitors
 - Response rate 15-26%³⁻⁵
 - Trametinib PFS improvement vs SOC⁴
 - Median PFS 13.0 vs 7.2 months
 - Discontinuation due to AE/complication 35.4% vs 12.3%
 - KRAS mutation associated with longer PFS with binimetinib^{5,6}

1.McLachlan, Gore and Banerjee. Pharmacogenomics. 2016 Aug;17(12):1353-63; 2. Slomovitz, Gourley, Carey et al Gynecol Oncol. 2020 Mar;156(3):715-725. 3.Farley, Brady, Vathipadiekal et al. Lancet Oncol. 2013;14:134–140; 4.Gershenson, Miller, Brady et al Annals of Oncology (2019) 30 (suppl_5): v851-v934; 5. Grisham, Monk, Banerjee et al Journal Clin Oncol 38:3753-3762 2020; 6. Grisham, Vergote, Banerjee et al Journal Clin Oncol 39, no. 15_suppl (May 20, 2021) 5519-5519.


~30% have a KRAS mutation ~70% have RAS Pathway-Associated mutations

Preclinical Rationale: MEK and FAK inhibition in LGSOC

More Complete Shutdown of Tumor Growth **Requires Addressing Multiple Resistance Mechanisms**

VS-6766 (RAF/MEK inhibitor) and FAK inhibitor combination leads to more robust anti-tumor efficacy in KRAS mutant ovarian cancer models

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

FRAME: Clinical trial design and results in LGSOC

NCT03875820

Expansions

Optimization of Novel Intermittent Dosing Regimen for Improved Safety While Maintaining Clinical Efficacy*

Escalation
12 patients
6 LGSOC

Low Grade Serous Ovarian Cancer * (20 patients)

Advanced NSCLC KRAS-Mut * (20 patients)

Advanced CRC RAS-Mut * (10 patients)

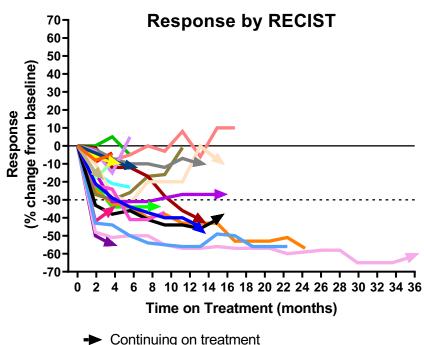
Advanced solid Tumours Enriched for RAS-Mut * (Biopsy-amenable, 7 patients)

Endometrioid RAS/RAF-Mut (10 patients)

NSCLC KRAS G12V (10 patients)

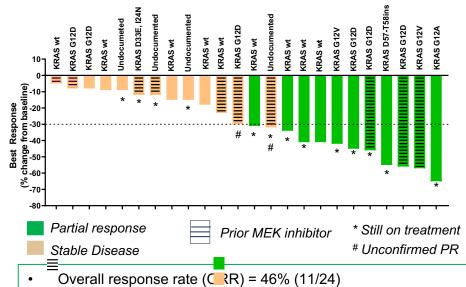
Pancreatic Cancer (10 patients)

Adverse event details	LGSOC									
	Escalation			Expansion						
	VS-6766		VS-6766		VS-6766		VS-6766		Total G.3/4 (n=25)	Percentage of patients with G.3/4 AE (%)
	4mg		3.2mg		4mg		3.2mg			
	D 200mg		D 200mg		D 200mg		D 200mg			
	(n=2)		(n=3)		(n=3)		(n=17)			
	G.1 -	G.3 -	G.1 -	G.3 -	G.1 -	G.3 -	G.1 -	G.3 -		
	G.2	G.4	G.2	G.4	G.2	G.4	G.2	G.4		
Rash	2		2		3		15	2	2	8%
CK elevation	1	1	2		2	1	12	1	3	12%
Diarrhoea			2		2		10	1	1	4%
AST elevation	1				2		8		0	0%
Mouth										
ulcer/Mucositis/					2	1	8		1	4%
Glossitis										
Hyperbilirubinemia		1	1				8		1	4%
ALT elevation	1				2		5		0	0%
Nausea	1		2		3		3		0	0%
Peripheral oedema							8		0	0%
Visual disturbance					1		7		0	0%
Total:	6	2	9	0	17	2	84	4	8	32%



Susana Banerjee

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

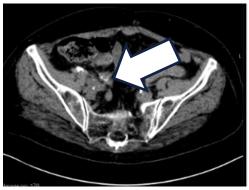

FRAME: Efficacy of VS-6766 + Defactinib in LGSOC

Best response by RECIST

Susana Banerjee

Continuing on treatment

- KRAS mutant ORR = 64% (7/11)
 - KRAS wild-type ORR = 44% (4/9)
 - KRAS status undetermined (3 SD; 1 unconfirmed PR)
- Responses in patients previously treated with MEKi
- Median PFS 23 months (95% CI 10.6-NR) across all LGSOC


Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

FRAME: Case Study VS-6766 + Defactinib in LGSOC

Jan 2018

Jul 2021

- 77 year-old female
- Diagnosis: Low grade serous ovarian cancer
- Nov 2010: Surgery
- Dec-2010-Feb 2011: Carboplatin + paclitaxel
- April 2011-Aug 2011: Liposomal doxorubicin
- Sept 2011:palliative surgery
- Sept 2011-Aug 2016: Letrozole
- Oct 2016- Aug 2017: Tamoxifen
- Jan 2018-Present: on VS6766 + Defactinib in FRAME study, ongoing Partial Response

Summary and Conclusions

- The combination of VS-6766 (RAF/MEKi) + defactinib (FAKi) with a novel, intermittent schedule exhibits a manageable safety profile, with only 1 patient discontinuing for adverse events to date
- VS-6766 in combination with defactinib shows encouraging response with durability across all LGSOC patients
 - All LGSOC ORR 46%; median PFS 23 months
 - KRAS mutated LGSOC ORR 64%; median PFS 23 months
- In May 2021, FDA granted Breakthrough Therapy Designation for VS-6766 + defactinib for treatment of patients with recurrent LGSOC after one or more prior lines of therapy, including platinum-based chemotherapy
- A registration-directed clinical study in LGSOC, ENGOT-ov60/GOG3052/RAMP201, is currently enrolling patients in Europe and US (NCT04625270)¹

Acknowledgements

The ROYAL MARSDEN NHS Foundation Trust

Patients and families **ECMC**

NIHR Biomedical Research Centre

CRUK

Verastem Oncology Chugai Pharmaceuticals

The Institute of

Biomedical Research Centre at The Royal Marsden and the ICR

European Society for Medical Oncology (ESMO)

Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

